On Certain 3-Dimensional Limit Boundary Value Problems

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Fredholm Alternative for Certain Quasilinear Boundary Value Problems

We study the Dirichlet boundary value problem for the p-Laplacian of the form −∆pu− λ1|u|p−2u = f in Ω, u = 0 on ∂Ω, where Ω ⊂ N is a bounded domain with smooth boundary ∂Ω, N 1, p > 1, f ∈ C(Ω) and λ1 > 0 is the first eigenvalue of ∆p. We study the geometry of the energy functional Ep(u) = 1 p ∫

متن کامل

On the Determinant of One-Dimensional Elliptic Boundary Value Problems

We discuss the ζ−regularized determinant of elliptic boundary value problems on a line segment. Our framework is applicable for separated and non-separated boundary conditions.

متن کامل

L2-transforms for boundary value problems

In this article, we will show the complex inversion formula for the inversion of the L2-transform and also some applications of the L2, and Post Widder transforms for solving singular integral equation with trigonometric kernel. Finally, we obtained analytic solution for a partial differential equation with non-constant coefficients.

متن کامل

Boundary Value Problems for Metrics on 3-manifolds

We discuss the problem of prescribing the mean curvature and conformal class as boundary data for Einstein metrics on 3-manifolds, in the context of natural elliptic boundary value problems for Riemannian metrics.

متن کامل

On Equivariant Boundary Value Problems

smooth coefficients aα(x), L+ be a formally adjoint differential operation. Let L0, L0 be minimal operators (i.e., for example, D(L0) is the clozure of C∞ 0 (Ω) in the norm of the graph ‖u‖L = ‖u‖L2(Ω)+‖Lu‖L2(Ω)), and L, L+ be maximal expansions of L,L+ in the space L2(Ω) respectively (i.e. L = (L0 ) ∗, L+ = (L0)∗), L̃ = L|D(L̃) where D(L̃) is the clozure of C∞(Ω̄) in the norm of the graph ‖u‖L and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Lobachevskii Journal of Mathematics

سال: 2020

ISSN: 1995-0802,1818-9962

DOI: 10.1134/s1995080220050133